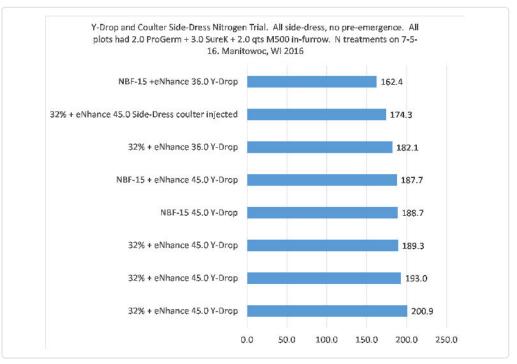


Corn N product, rate, coulter vs. Y-Drop side-dress trial

Experiment Info:


Planted:	5-20-2016
Harvest:	11-3-2016
Yield Goal:	210
Target Fert.:	
Variety:	DS9593-3000
Population:	32,000
Row Width:	
Prev. Crop:	corn
Plot Size:	
Replications:	

Soil Test Values (ppm):

Soil Test Values (ppm):	
pH:	7.5
CEC:	
%OM:	5.0
Bray P1:	81
Bicarb P:	
K:	169
S:	6.2
%K:	
%Mg:	
%Ca:	
%H:	
Zn:	9.1
Mn:	19
B:	0.9

Objective:

To compare various rates of 32% UAN with and w/o eNhance, NBF-15 with and w/o eNhance, and Y-Drop vs coulter inject side-dress application methods in a 100% post-emergence N trial (no pre-emergence N application).

Conclusions:

One variable intentionally inserted into this trial was one treatment replicated 3 times across the width of the plot to determine yield variability within the plot. Also determined in the results was rate sensitivity regardless of N product, likely due to high rainfall amounts during the season. This plot was 100% post-emergence nitrogen, with no pre-emergence N being applied. This plot significantly out-yielded the 100% pre-emergence N plot, again likely due to rainfall conditions. The Y-Drop application method significantly out-performed the coulter injected N, once again demonstrating the superiority of the Y-Drop application method versus center of the row coulter injection.