

Experiment Info:

Planted:	04-18-2018
Harvest:	10-21-2018
Yield Goal:	
Target Fert .:	
Variety:	
Population:	
Row Width:	30"
Prev. Crop:	
Plot Size:	15' X 50'
Replications:	1

Soil Test Values (ppm):	
pH:	6.7
CEC:	5
%OM:	2.5
Bray P1:	19
Bicarb P:	
K:	76
S:	10
%K:	4
%Mg:	11
%Ca:	79
%H:	6
Zn:	0.72
Mn:	63.8
В:	0.7

Objective:

Evaluate the effect of C-Tech at various rates and timings on corn yield.

Corn was planted on April 18, 2018. Nitrogen treatment for all plots included 30% UAN + eNhance at 20 gal/a BDC PRE + 52 gal/a side dress at V5. At planting treatments were applied in a 4" band over the row on the soil surface. C-Tech was applied at 0.25 or 0.5 gal/a in the surface band or as part of the side dress application with nitrogen.

Corn was harvested October 21, 2018.

Conclusions:

- All planter and/or side dress treatments provided higher corn yield than did the nitrogen only check. The best application of C-Tech in this trial was at planting, and the 0.25 gal/a use rate performed better than the 0.5 gal/a use rate.
- Side dress applications of C-Tech were not as effective as at-planting applications.