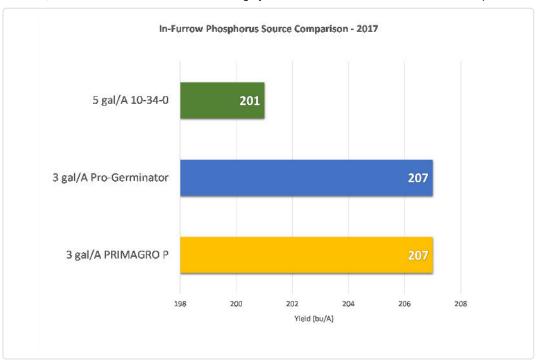


In-Furrow Phosphorus Source in Corn - 2017

Ferriday, LA

Experiment Info:

Planted:	
Harvest:	
Yield Goal:	200 bu
Target Fert.:	
Variety:	Pioneer 1197
Population:	
Row Width:	
Prev. Crop:	
Plot Size:	
Replications:	


Soil Test Values (ppm):	
рН:	6.4
CEC:	34.2
%OM:	2.5
Bray P1:	18
Bicarb P:	
K:	402
S:	25
%K:	3
%Mg:	24
%Ca:	61.6
%H:	9.3
Zn:	2.8
Mn:	7
B:	1.1

Objective:

Growers across the country are becoming accustomed to utilizing phosphate in-furrow. However, research has shown that not all products are equal in this application.

With lower grain prices, some growers have turned to using conventional forms of phosphate rather than a product designed to be placed in-furrow. Previous research has not favored this decision.

In addition, there are products on the market that go a step further, and not only provide an in-furrow phosphate source, but include beneficial microbes and highly available carbon sources to benefit the crop and rhizosphere.

Conclusions:

- Conventional phosphate sources fall behind products designed for in-furrow use.
- · AgroLiquid's Flavonol Polymer Technology provides the superior nutrient protection and seed safety required for maximum in-furrow phosphate efficacy.