

For The Soil | For The Plant | For the Future

Potatoes

How are Potatoes Used?

Potato Utilization (%), 2007

Preferred Growing Conditions for Potato

- Deep, well drained soil
- High water holding capacity (without becoming saturated)
 - Soils with high clay content require special management to maintain water drainage and soil structure
- Peat or muck soils are good if they are adequately drained
- Sandy soils require proper irrigation and fertilization
 - Produce high yields with good quality
- Potatoes are tolerant to low pH soils
 - Reduced incidence of common scab in soils with pH<5.4
 - Scab resistant varieties perform well in higher pH soils

Low pH Soils can Limit Nutrient Uptake

Reduced availability of N, P, K, S, Ca and Mg

Increased availability of AI (can be toxic)

Potato Plant Part Description

Potato Growth Stages

GROWTH STAGE Sprout development

Sprouts develop from eyes on seed tubers and grow upward to emerge from the soil

Roots begin to develop at the base of emerging sprouts

GROWTH STAGE II Vegetative growth

Leaves and branch stems develop from aboveground nodes along emerged sprouts

Roots and stolons develop at belowground nodes

Photosynthesis begins

GROWTH STAGE III Tuber initiation

Tubers form at stolon tips but are not yet appreciably enlarging

In most cultivars the end of this stage coincides with early flowering

GROWTH STAGE IV Tuber bulking

Tuber cells expand with the accumulation of water, nutrients, and carbohydrates

Tubers become the dominant site for deposition of carbohydrates and mobile inorganic nutrients

GROWTH STAGE V Maturation

Vines turn yellow and lose leaves, photosynthesis decreases, tuber growth slows, and vines eventually die

Tuber dry matter content reaches a maximum, and tuber skins set

AGROLIBUID

Potato Nutrient Needs

	Tuber yield, cwt/A					
	Vines	200	300	400	500	600
Nutrient	Nutrient uptake Ib/A					
Nitrogen (N)	90	86	128	171	214	252
Phosphorus (P)	11	12	17	23	28	35
Potassium (K)	75	96	144	192	240	288
Calcium (Ca)	<mark>43</mark>	3.0	<mark>4.4</mark>	<mark>5.9</mark>	7.4	8.9
Magnesium (Mg)	25	5.9	8.9	11.8	14.7	17.6
Sulfur (S)	_	8.8	13.2	17.6	22.0	26.4
Zinc (Zn)	0.11	0.70	0.11	0. <mark>1</mark> 4	0.18	0.22
Manganese (Mn)	0.17	0.03	0.04	0.06	0.07	0.08
Iron (Fe)	2.21	0.53	0.79	1.06	1.32	1.58
Copper (Cu)	0.03	0.04	0.06	0.08	0.10	0.12
Boron (B)	0.14	0.03	0.04	0.05	0.06	0.07

Source: Univ. Minnesota

Potato Nutrient Need

Nitrogen:

- Peak demand 20 60 days after planting
- Later applications can delay maturity, poor skin quality

Phosphorus:

• Major role in tuber set

Potassium:

- Important in tuber yield, size, and quality
- Helps prevent bruising and improve storage quality

Calcium:

- Helps maintain storage quality
- Reduces hollow heart

Total potato plant N, P, and K uptake at Aberdeen, 1991-93.

Source: Univ. Idaho

Pro-Germinator Performance

Basin Fertilizer, 2015

Pro-Germinator 7.5 gal/A vs.10-34-0 17 gal/AApplied through irrigation system

Yield (cwt/acre):

Pro-Germinator = 555

10-34-0 = 514

\$281 net increase in return (\$7/ cwt potato price)

AgroLiquid Performance

AgroLiquid: Pro-Germinator 8 gal/A (at planting)

- + Sure K 2 gal/A
- + Micro 500 0.5 gal/A
 - 32% UAN 10 gal/A (at hilling)

Conventional: 12-12-12 900 lb/A (broadcast and incorporated)

AgroLiquid Performance

•In season applications of Nitrogen were pivot applied and identical for all treatments. *Full ACLF Program = average of 2010 & 2011 data only

PrimAgro Products on Potatoes

Pro-Germinator, Kalibrate, PrimAgro P, or PrimAgro K applied at 5 gal/acre at planting. C-Tech Applied at 0.5 gal/acre at side dress.

474

CWt./acre